Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction
نویسندگان
چکیده
In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR imaging studies.
منابع مشابه
Unbiased diffeomorphic atlas construction for computational anatomy.
Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques o...
متن کاملGenerative diffeomorphic atlas construction from brain and spinal cord MRI data
In this paper we will focus on the potential and on the challenges associated with the development of an integrated brain and spinal cord modelling framework for processing MR neuroimaging data. The aim of the work is to explore how a hierarchical generative model of imaging data, which captures simultaneously the distribution of signal intensities and the variability of anatomical shapes acros...
متن کاملProbabilistic Domain Modelling With Contextualized Distributional Semantic Vectors
Generative probabilistic models have been used for content modelling and template induction, and are typically trained on small corpora in the target domain. In contrast, vector space models of distributional semantics are trained on large corpora, but are typically applied to domaingeneral lexical disambiguation tasks. We introduce Distributional Semantic Hidden Markov Models, a novel variant ...
متن کاملDiffeomorphic Iterative Centroid Methods for Template Estimation on Large Datasets
A common approach for analysis of anatomical variability relies on the estimation of a template representative of the population. The Large Deformation Diffeomorphic Metric Mapping is an attractive framework for that purpose. However, template estimation using LDDMM is computationally expensive, which is a limitation for the study of large datasets. This paper presents an iterative method which...
متن کاملGenerative Modeling of Itemset Sequences Derived from Real Databases
The problem of discovering temporal and attribute dependencies from multi-sets of events derived from realworld databases can be mapped as a sequential pattern mining task. Although generative approaches can offer a critical compact and probabilistic view of sequential patterns, existing contributions are only prepared to deal with sequences with a fixed multivariate order. Thus, this work targ...
متن کامل